Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Clin Trials ; 11(1): 53-60, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585621

RESUMO

Background: Low-dose aspirin is ineffective for primary prevention of cardiovascular events in people with body weight greater than 70kg. While the prevalent explanation for this is reduced platelet cyclooxygenase-1 (COX-1) inhibition at higher body weights, supporting data are limited, thereby demanding further investigation of the reason(s) underlying this observation. We propose that aspirin-mediated cyclooxygenase-2 (COX-2) acetylation and the resulting synthesis of 15-epi-lipoxin A4, a specialized pro-resolving mediator, is suboptimal in higher weight individuals, which may contribute to the clinical trial findings. Methods: To test this hypothesis, we are conducting a double-blind, placebo-controlled, randomized, mechanistic crossover trial. Healthy men and women exhibiting a wide range of body weights take 81mg aspirin and 325mg aspirin for 3 weeks each, following 3-week placebo run-in and wash-out phases. Our target sample size is 90 subjects, with a minimum of 72 completing all visits estimated to be necessary to achieve power adequate to test our primary hypothesis. Results: Our primary endpoint is the difference in change in plasma 15-epi-lipoxin A4 occurring with each dose of aspirin. Secondary endpoints include lipid mediator profiles, serum bioactive lipid profiles, and other endpoints involved in the resolution of vascular inflammation. Conclusions: Study enrollment began in November 2021 and is ongoing. The results of this study will improve our understanding of the mechanisms underlying aspirin's role(s) in the prevention of adverse cardiovascular outcomes. They may also lead to additional studies with the potential to inform dosing strategies for patients based on body weight.

2.
PLoS Pathog ; 20(1): e1011280, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38271464

RESUMO

Subverting the host immune response to inhibit inflammation is a key virulence strategy of Yersinia pestis. The inflammatory cascade is tightly controlled via the sequential action of lipid and protein mediators of inflammation. Because delayed inflammation is essential for Y. pestis to cause lethal infection, defining the Y. pestis mechanisms to manipulate the inflammatory cascade is necessary to understand this pathogen's virulence. While previous studies have established that Y. pestis actively inhibits the expression of host proteins that mediate inflammation, there is currently a gap in our understanding of the inflammatory lipid mediator response during plague. Here we used the murine model to define the kinetics of the synthesis of leukotriene B4 (LTB4), a pro-inflammatory lipid chemoattractant and immune cell activator, within the lungs during pneumonic plague. Furthermore, we demonstrated that exogenous administration of LTB4 prior to infection limited bacterial proliferation, suggesting that the absence of LTB4 synthesis during plague contributes to Y. pestis immune evasion. Using primary leukocytes from mice and humans further revealed that Y. pestis actively inhibits the synthesis of LTB4. Finally, using Y. pestis mutants in the Ysc type 3 secretion system (T3SS) and Yersinia outer protein (Yop) effectors, we demonstrate that leukocytes recognize the T3SS to initiate the rapid synthesis of LTB4. However, several Yop effectors secreted through the T3SS effectively inhibit this host response. Together, these data demonstrate that Y. pestis actively inhibits the synthesis of the inflammatory lipid LTB4 contributing to the delay in the inflammatory cascade required for rapid recruitment of leukocytes to sites of infection.


Assuntos
Peste , Yersinia pestis , Humanos , Animais , Camundongos , Yersinia pestis/metabolismo , Peste/microbiologia , Sistemas de Secreção Tipo III/metabolismo , Leucotrieno B4/metabolismo , Leucócitos/metabolismo , Inflamação , Proteínas de Bactérias/metabolismo
3.
Sci Total Environ ; 877: 162934, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36934930

RESUMO

Results of human and animal studies independently suggest that either ambient fine particulate matter (PM2.5) air pollution exposure or a disturbed circadian rhythm (circadian dyssynchrony) are important contributing factors to the rapidly evolving type-2-diabetes (T2D) epidemic. The objective of this study is to investigate whether circadian dyssynchrony increases the susceptibility to PM2.5 and how PM2.5 affects metabolic health in circadian dyssynchrony. We examined systemic and organ-specific changes in glucose homeostasis and insulin sensitivity in mice maintained on a regular (12/12 h light/dark) or disrupted (18/6 h light/dark, light-induced circadian dyssynchrony, LICD) light cycle exposed to air or concentrated PM2.5 (CAP, 6 h/day, 30 days). Exposures during Zeitgeber ZT3-9 or ZT11-17 (Zeitgeber in circadian time, ZT0 = begin of light cycle) tested for time-of-day PM2.5 sensitivity (chronotoxicity). Mice transgenic for lung-specific overexpression of extracellular superoxide dismutase (ecSOD-Tg) were used to assess the contribution of CAP-induced pulmonary oxidative stress. Both, CAP exposure from ZT3-9 or ZT11-17, decreased glucose tolerance and insulin sensitivity in male mice with LICD, but not in female mice or in mice kept on a regular light cycle. Although changes in glucose homeostasis in CAP-exposed male mice with LICD were not associated with obesity, they were accompanied by white adipose tissue (WAT) inflammation, impaired insulin signaling in skeletal muscle and liver, and systemic and pulmonary oxidative stress. Preventing CAP-induced oxidative stress in the lungs mitigated the CAP-induced decrease in glucose tolerance and insulin sensitivity in LICD. Our results demonstrate that circadian dyssynchrony is a novel susceptibility state for PM2.5 and suggest that PM2.5 by inducing pulmonary oxidative stress increases glucose intolerance and insulin resistance in circadian dyssynchrony.


Assuntos
Poluentes Atmosféricos , Intolerância à Glucose , Resistência à Insulina , Humanos , Masculino , Feminino , Camundongos , Animais , Material Particulado/toxicidade , Material Particulado/metabolismo , Intolerância à Glucose/induzido quimicamente , Pulmão , Estresse Oxidativo , Glucose/metabolismo , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/metabolismo
4.
Mol Metab ; 66: 101637, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36400404

RESUMO

OBJECTIVE: Physical activity has been shown to reduce the risk of CVD mortality in large-cohort longitudinal studies; however, the mechanisms underpinning the beneficial effects of exercise remain incompletely understood. Emerging data suggest that the risk reducing effect of exercise extends beyond changes in traditional CVD risk factors alone and involves alterations in immunity and reductions in inflammatory mediator production. Our study aimed to determine whether exercise-enhanced production of proresolving lipid mediators contribute to alterations in macrophage intermediary metabolism, which may contribute to the anti-inflammatory effects of exercise. METHODS: Changes in lipid mediators and macrophage metabolism were assessed in C57Bl/6 mice following 4 weeks of voluntary exercise training. To investigate whether exercise-stimulated upregulation of specialized proresolving lipid mediators (SPMs) was sufficient to enhance mitochondrial respiration, both macrophages from control mice and human donors were incubated in vitro with SPMs and mitochondrial respiratory parameters were measured using extracellular flux analysis. Compound-C, an ATP-competitive inhibitor of AMPK kinase activity, was used to investigate the role of AMPK activity in SPM-induced mitochondrial metabolism. To assess the in vivo contribution of 5-lipoxygenase in AMPK activation and exercise-induced mitochondrial metabolism in macrophages, Alox5-/- mice were also subjected to exercise training. RESULTS: Four weeks of exercise training enhanced proresolving lipid mediator production, while also stimulating the catabolism of inflammatory lipid mediators (e.g., leukotrienes and prostaglandins). This shift in lipid mediator balance following exercise was associated with increased macrophage mitochondrial metabolism. We also find that treating human and murine macrophages in vitro with proresolving lipid mediators enhances mitochondrial respiratory parameters. The proresolving lipid mediators RvD1, RvE1, and MaR1, but not RvD2, stimulated mitochondrial respiration through an AMPK-dependent signaling mechanism. Additionally, in a subset of macrophages, exercise-induced mitochondrial activity in vivo was dependent upon 5-lipoxygenase activity. CONCLUSION: Collectively, these results suggest that exercise stimulates proresolving lipid mediator biosynthesis and mitochondrial metabolism in macrophages via AMPK, which might contribute to the anti-inflammatory and CVD risk reducing effect of exercise.


Assuntos
Proteínas Quinases Ativadas por AMP , Exercício Físico , Macrófagos , Animais , Humanos , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Araquidonato 5-Lipoxigenase/metabolismo , Araquidonato 5-Lipoxigenase/farmacologia , Doenças Cardiovasculares/metabolismo , Macrófagos/metabolismo , Fosforilação , Exercício Físico/fisiologia , Respiração Celular/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Inflamação/metabolismo
5.
Clin Nutr ; 40(6): 4097-4105, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33618966

RESUMO

BACKGROUND AND OBJECTIVE: Exercise increases quality of life and lowers all-cause mortality, likely by preventing cardiovascular disease. Although the beneficial effects of exercise are linked with reductions in chronic inflammation, individual responses vary and factors that contribute to the anti-inflammatory effects of cardiovascular fitness remain largely undefined. We sought to investigate the role of fatty acids in the inverse relationship between inflammation and cardiovascular fitness. APPROACH AND RESULTS: In this cross-sectional study using data from 435 participants in NHANES and linear regression models with CRP as the outcome, we observed significant negative interactions between VO2max and omega-3 polyunsaturated fatty acids (PUFAs) but not saturated, monounsaturated, or omega-6 PUFAs. When stratified by omega-3 PUFA tertiles, participants in the medium tertile, but not low tertile, show an enhanced negative association between VO2max and CRP, with a -32.0% difference (95% CI: -44.95, -15.9%) per 10 mL/kg/min of VO2max. Exploratory factor analysis identified five unique dietary fatty acid (FA) profiles. The FA profile consisting predominantly of omega-3 PUFA had the strongest negative association for VO2max and CRP, with a -28.2% difference in CRP (95% CI: -43.4, -8.9) per 10 mL/kg/min of VO2max. We also found that alpha-linolenic acid (ALA) and docosahexaenoic acid (DHA) enhanced the negative association between VO2max and CRP, suggesting that the anti-inflammatory response to VO2max capacity is associated with ALA and DHA levels. Males, Whites, and individuals with lower BMI were more sensitive to the effects of omega-3 PUFAs, while having high SFA levels attenuated the benefit. CONCLUSIONS: This study suggests that omega-3 PUFAs are effect modifiers for VO2max and CRP and that the anti-inflammatory benefits of increasing cardiovascular fitness are associated with omega-3 PUFAs.


Assuntos
Anti-Inflamatórios/sangue , Proteína C-Reativa/análise , Aptidão Cardiorrespiratória/fisiologia , Ácidos Graxos Ômega-3/sangue , Consumo de Oxigênio/efeitos dos fármacos , Adulto , Sistema Cardiovascular/efeitos dos fármacos , Estudos Transversais , Exercício Físico/fisiologia , Ácidos Graxos Ômega-6/sangue , Feminino , Humanos , Inflamação , Modelos Lineares , Masculino , Inquéritos Nutricionais
6.
Nutrients ; 12(8)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796546

RESUMO

Immune system dysregulation is among the many adverse effects incurred by astronauts during space flights. Omega-3 fatty acids, ß-alanine, and carnosine are among the many nutrients that contribute to immune system health. For space flight, crewmembers are prescribed a diet with a macronutrient composition of 55% carbohydrate, 30% fat, and 15% protein. To quantify omega-3 fatty acid, ß-alanine and carnosine intakes from such a diet, and to examine each nutrient's impact on exercise performance, 21 participants adhered to the aforementioned macronutrient ratio for 14 days which was immediately followed by a workout performed on gravity-independent resistive exercise hardware. Results included daily omega-3 fatty acid intakes below the suggested dietary intake. Daily omega-3 fatty acid, ß-alanine and carnosine intakes each correlated with non-significant amounts of variance from the workout's volume of work. Given the nutritional requirements to maintain immune system function and the demands of in-flight exercise countermeasures for missions of increasingly longer durations current results, in combination with previously published works, imply in-flight supplementation may be a prudent approach to help address the physiological and mental challenges incurred by astronauts on future space flights.


Assuntos
Deficiências Nutricionais/fisiopatologia , Dieta/efeitos adversos , Exercício Físico/fisiologia , Treinamento de Força/métodos , Voo Espacial , Adulto , Astronautas , Carnosina/análise , Estudos Cross-Over , Deficiências Nutricionais/etiologia , Dieta/métodos , Inquéritos sobre Dietas , Ácidos Graxos Ômega-3/análise , Feminino , Humanos , Sistema Imunitário/efeitos dos fármacos , Masculino , Necessidades Nutricionais , Contramedidas de Ausência de Peso , Simulação de Ausência de Peso , beta-Alanina/análise
7.
J Immunol ; 203(11): 3013-3022, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31653685

RESUMO

The mechanisms by which regular exercise prevents the development and progression of chronic inflammatory diseases are largely unknown. We find that exercise enhances resolution of acute inflammation by augmenting resolvin D1 (RvD1) levels and by promoting macrophage phagocytosis. When compared with sedentary controls, mice that performed a four-week treadmill exercise regimen displayed higher macrophage phagocytic activity, enhanced RvD1 levels, and earlier neutrophil clearance following an acute inflammatory challenge. In acute inflammatory cell extracts from exercised mice, we found elevated expression of Alox15 and Alox5 and higher RvD1 levels. Because exercise stimulates release of epinephrine, which has immunomodulatory effects, we questioned whether epinephrine exerts proresolving actions on macrophages. Epinephrine-treated macrophages displayed higher RvD1 levels and 15-lipoxygenase-1 protein abundance, which were prevented by incubation with the α1 adrenergic receptor (α1-AR) antagonist prazosin. Likewise, stimulation of the α1-AR with phenylephrine enhanced macrophage phagocytosis and RvD1 production. During acute inflammation, prazosin abrogated exercise-enhanced neutrophil clearance, macrophage phagocytosis, and RvD1 biosynthesis. These results suggest that exercise-stimulated epinephrine enhances resolution of acute inflammation in an α1-AR-dependent manner. To our knowledge, our findings provide new mechanistic insights into the proresolving effects of exercise that could lead to the identification of novel pathways to stimulate resolution.


Assuntos
Ácidos Docosa-Hexaenoicos , Inflamação , Animais , Catecolaminas , Camundongos , Fagocitose
9.
J Invest Dermatol ; 138(9): 2051-2060, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29559341

RESUMO

Cutaneous injury causes underlying tissue damage that must be quickly repaired to minimize exposure to pathogens and to restore barrier function. While the role of growth factors in tissue repair is established, the role of lipid mediators in skin repair has not been investigated extensively. Using a mass spectrometry-based lipid mediator metabolomics approach, we identified D-series resolvins and related pro-resolving lipid mediators during skin injury in mice and pigs. Differentiation of human epidermal keratinocytes increased expression of 15-lipoxygenase and stereospecific production of 17S-hydroxydocosahexaenoic acid, the common upstream biosynthetic marker and precursor of D-series resolvins. In human and pig skin, specific receptors for D-series resolvins were expressed in the epidermal layer and mice deficient in RvD1 receptor Alx/Fpr2 showed an endogenous defect in re-epithelialization. Topical application of D-series resolvins expedited re-epithelialization during skin injury and they enhanced migration of human epidermal keratinocytes in a receptor-dependent manner. The enhancement of re-epithelialization by RvD2 was lost in mice genetically deficient in its receptor and migration of keratinocytes stimulated with RvD2 was associated with activation of the PI3K-AKT-mTOR-S6 pathway, blockade of which prevented its pro-migratory actions. Collectively, these results demonstrate that resolvins have direct roles in the tissue repair program.


Assuntos
Ácidos Docosa-Hexaenoicos/biossíntese , Regeneração/fisiologia , Pele/metabolismo , Cicatrização/fisiologia , Ferimentos e Lesões/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Queratinócitos/metabolismo , Queratinócitos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pele/lesões , Pele/patologia , Suínos , Ferimentos e Lesões/patologia
10.
Nat Commun ; 7: 12859, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27659679

RESUMO

Chronic unresolved inflammation plays a causal role in the development of advanced atherosclerosis, but the mechanisms that prevent resolution in atherosclerosis remain unclear. Here, we use targeted mass spectrometry to identify specialized pro-resolving lipid mediators (SPM) in histologically-defined stable and vulnerable regions of human carotid atherosclerotic plaques. The levels of SPMs, particularly resolvin D1 (RvD1), and the ratio of SPMs to pro-inflammatory leukotriene B4 (LTB4), are significantly decreased in the vulnerable regions. SPMs are also decreased in advanced plaques of fat-fed Ldlr-/- mice. Administration of RvD1 to these mice during plaque progression restores the RvD1:LTB4 ratio to that of less advanced lesions and promotes plaque stability, including decreased lesional oxidative stress and necrosis, improved lesional efferocytosis, and thicker fibrous caps. These findings provide molecular support for the concept that defective inflammation resolution contributes to the formation of clinically dangerous plaques and offer a mechanistic rationale for SPM therapy to promote plaque stability.

11.
Circulation ; 134(9): 666-680, 2016 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-27507404

RESUMO

BACKGROUND: Resolvins are lipid mediators generated by leukocytes during the resolution phase of inflammation. They have been shown to regulate the transition from inflammation to tissue repair; however, it is unknown whether resolvins play a role in tissue revascularization following ischemia. METHODS: We used a murine model of hind limb ischemia (HLI), coupled with laser Doppler perfusion imaging, microcomputed tomography, and targeted mass spectrometry, to assess the role of resolvins in revascularization and inflammation resolution. RESULTS: In mice undergoing HLI, we identified resolvin D2 (RvD2) in bone marrow and skeletal muscle by mass spectrometry (n=4-7 per group). We also identified RvD2 in skeletal muscle biopsies from humans with peripheral artery disease. Monocytes were recruited to skeletal muscle during HLI and isolated monocytes produced RvD2 in a lipoxygenase-dependent manner. Exogenous RvD2 enhanced perfusion recovery in HLI and microcomputed tomography of limb vasculature revealed greater volume, with evidence of tortuous arterioles indicative of arteriogenesis (n=6-8 per group). Unlike other treatment strategies for therapeutic revascularization that exacerbate inflammation, RvD2 did not increase vascular permeability, but reduced neutrophil accumulation and the plasma levels of tumor necrosis factor-α and granulocyte macrophage colony-stimulating factor. In mice treated with RvD2, histopathologic analysis of skeletal muscle of ischemic limbs showed more regenerating myocytes with centrally located nuclei. RvD2 enhanced endothelial cell migration in a Rac-dependent manner, via its receptor, GPR18, and Gpr18-deficient mice had an endogenous defect in perfusion recovery following HLI. Importantly, RvD2 rescued defective revascularization in diabetic mice. CONCLUSIONS: RvD2 stimulates arteriogenic revascularization during HLI, suggesting that resolvins may be a novel class of mediators that both resolve inflammation and promote arteriogenesis.


Assuntos
Ácidos Docosa-Hexaenoicos/uso terapêutico , Membro Posterior/irrigação sanguínea , Isquemia/tratamento farmacológico , Doença Arterial Periférica/tratamento farmacológico , Animais , Células Cultivadas , Estudos de Coortes , Ácidos Docosa-Hexaenoicos/farmacologia , Feminino , Humanos , Inflamação/diagnóstico , Inflamação/tratamento farmacológico , Inflamação/fisiopatologia , Isquemia/fisiopatologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Pessoa de Meia-Idade , Doença Arterial Periférica/diagnóstico , Doença Arterial Periférica/fisiopatologia
12.
Am J Pathol ; 186(7): 1801-1813, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27171898

RESUMO

Acute lung injury is a life-threatening condition caused by disruption of the alveolar-capillary barrier leading to edema, influx of inflammatory leukocytes, and impaired gas exchange. Specialized proresolving mediators biosynthesized from essential fatty acids, such as docosahexaenoic acid, have tissue protective effects in acute inflammation. Herein, we found that the docosahexaenoic acid-derived mediator resolvin D3 (RvD3): 4S,11R,17S-trihydroxydocosa-5Z,7E,9E,13Z,15E,19Z-hexaenoic acid was present in uninjured lungs, and increased significantly 24 to 72 hours after hydrochloric acid-initiated injury. Because of its delayed enzymatic degradation, we used aspirin-triggered (AT)-RvD3: 4S,11R,17R-trihydroxydocosa-5Z,7E,9E,13Z,15E,19Z-hexaenoic acid, a 17R-epimer of RvD3, for in vivo experiments. Histopathological correlates of acid injury (alveolar wall thickening, edema, and leukocyte infiltration) were reduced in mice receiving AT-RvD3 1 hour after injury. AT-RvD3-treated mice had significantly reduced edema, as demonstrated by lower wet/dry weight ratios, increased epithelial sodium channel γ expression, and more lymphatic vessel endothelial hyaluronan receptor 1-positive vascular endothelial growth factor receptor 3-positive lymphatic vessels. Evidence for counterregulation of NF-κB by RvD3 and AT-RvD3 was seen in vitro and by AT-RvD3 in vivo. Increases in lung epithelial cell proliferation and bronchoalveolar lavage fluid levels of keratinocyte growth factor were observed with AT-RvD3, which also promoted cutaneous re-epithelialization. Together, these data demonstrate protective actions of RvD3 and AT-RvD3 for injured mucosa that accelerated restoration of epithelial barrier and function.


Assuntos
Lesão Pulmonar Aguda/patologia , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos Insaturados/farmacologia , Lesão Pulmonar Aguda/metabolismo , Animais , Aspirina/farmacologia , Western Blotting , Modelos Animais de Doenças , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos BALB C
13.
Diabetes ; 65(8): 2268-81, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27207557

RESUMO

Accumulation of immune cells in adipose tissue promotes insulin resistance in obesity. Although innate and adaptive immune cells contribute to adipose inflammation, the processes that sustain these interactions are incompletely understood. Here we show that obesity promotes the accumulation of CD11c(+) adipose tissue immune cells that express C-C chemokine receptor 7 (CCR7) in mice and humans, and that CCR7 contributes to chronic inflammation and insulin resistance. We identified that CCR7(+) macrophages and dendritic cells accumulate in adipose tissue in close proximity to lymph nodes (LNs) (i.e., perinodal) and visceral adipose. Consistent with the role of CCR7 in regulating the migration of immune cells to LNs, obesity promoted the accumulation of CD11c(+) cells in LNs, which was prevented by global or hematopoietic deficiency of Ccr7 Obese Ccr7(-/-) mice had reduced accumulation of CD8(+) T cells, B cells, and macrophages in adipose tissue, which was associated with reduced inflammatory signaling. This reduction in maladaptive inflammation translated to increased insulin signaling and improved glucose tolerance in obesity. Therapeutic administration of an anti-CCR7 antibody phenocopied the effects of genetic Ccr7 deficiency in mice with established obesity. These results suggest that CCR7 plays a causal role in maintaining innate and adaptive immunity in obesity.


Assuntos
Tecido Adiposo/metabolismo , Inflamação/metabolismo , Linfonodos/metabolismo , Obesidade/metabolismo , Receptores CCR7/metabolismo , Imunidade Adaptativa/imunologia , Imunidade Adaptativa/fisiologia , Tecido Adiposo/efeitos dos fármacos , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Composição Corporal , Antígeno CD11c/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Movimento Celular/fisiologia , Células Dendríticas/metabolismo , Ácidos Graxos/farmacologia , Humanos , Imunidade Inata/imunologia , Imunidade Inata/fisiologia , Inflamação/imunologia , Linfonodos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/imunologia , Receptores CCR7/imunologia
14.
J Am Heart Assoc ; 4(8): e002034, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26296857

RESUMO

BACKGROUND: Patients with peripheral artery disease (PAD) experience significant morbidity and mortality. The OMEGA-PAD I Trial, a randomized, double-blinded, placebo-controlled trial, addressed the hypothesis that short-duration, high-dose n-3 polyunsaturated fatty acids (n-3 PUFA) oral supplementation improves endothelial function and inflammation in PAD. METHODS AND RESULTS: Eighty patients with stable claudication received 4.4 g of fish oil or placebo for 1 month. The primary end point was endothelial function as measured by brachial artery flow-mediated vasodilation. Secondary end points included biomarkers of inflammation, n-3 polyunsaturated fatty acids metabolome changes, lipid profile, and walking impairment questionnaires. Although there was a significant increase in FMD in the fish oil group following treatment (0.7±1.8% increase from baseline, P=0.04), this response was not different then the placebo group (0.6±2.5% increase from baseline, P=0.18; between-group P=0.86) leading to a negative finding for the primary endpoint. There was, however, a significant reduction in triglycerides (fish oil: -34±46 mg/dL, P<0.001; placebo -10±43 mg/dL, P=0.20; between-group differential P-value: 0.02), and an increase in the omega-3 index of 4±1% (P<0.001) in the fish oil group (placebo 0.1±0.9%, P=0.49; between-group P<0.0001). We observed a significant increase in the production of pathway markers of specialized pro-resolving mediators generated from n-3 polyunsaturated fatty acids in the fish oil group. CONCLUSIONS: High-dose, short-duration fish oil supplementation did not lead to a different response in the primary end point of endothelial function between the treatment and placebo group, but improved serum triglycerides and increased the production of downstream n-3 polyunsaturated fatty acids-derived products and mediators in patients with PAD. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov/. Unique identifier: NCT01310270.


Assuntos
Suplementos Nutricionais , Ácidos Graxos Ômega-3/administração & dosagem , Óleos de Peixe/administração & dosagem , Doença Arterial Periférica/tratamento farmacológico , Administração Oral , Idoso , Biomarcadores/sangue , Artéria Braquial/efeitos dos fármacos , Artéria Braquial/fisiopatologia , Método Duplo-Cego , Tolerância ao Exercício/efeitos dos fármacos , Ácidos Graxos Ômega-3/sangue , Feminino , Óleos de Peixe/sangue , Humanos , Mediadores da Inflamação/sangue , Masculino , Pessoa de Meia-Idade , Doença Arterial Periférica/sangue , Doença Arterial Periférica/diagnóstico , Doença Arterial Periférica/fisiopatologia , São Francisco , Inquéritos e Questionários , Fatores de Tempo , Resultado do Tratamento , Triglicerídeos/sangue , Vasodilatação/efeitos dos fármacos
15.
Prostaglandins Other Lipid Mediat ; 116-117: 49-56, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25619459

RESUMO

By generating prostaglandins, cyclooxygenase-2 (Cox-2/Ptgs2) plays a critical role in regulating inflammatory responses. While several inflammatory stimuli have been shown to increase Ptgs2 expression, less is known about how the transcription of this gene is terminated. Here we show that stimulation of macrophages with yeast zymosan, a TLR2/6 and dectin-1 agonist, causes a transient increase in the expression of Ptgs2 accompanied by a simultaneous increase in the expression of the transcriptional repressor, activating transcription factor-3 (Atf3). The expression of Ptgs2 was significantly higher in resident peritoneal macrophages isolated from Atf3(-/-) mice than that from Atf3(+/+) mice and was associated with higher prostaglandin production upon stimulation with zymosan. In activated macrophages, Atf3 accumulated in the nucleus and chromatin-immunoprecipitation analysis showed that Atf3 is recruited to the Ptgs2 promoter region. In acute peritonitis and in cutaneous wounds, there was increased leukocyte accumulation and higher levels of prostaglandins (PGE2/PGD2) in inflammatory exudates of Atf3(-/-) mice compared with WT mice. Collectively, these results demonstrate that during acute inflammation Atf3 negatively regulates Ptgs2 and therefore dysregulation of this axis could potentially contribute to aberrant Ptgs2 expression in chronic inflammatory diseases. Moreover, this axis could be a new therapeutic target for suppressing Ptgs2 expression and the resultant inflammatory responses.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Ciclo-Oxigenase 2/biossíntese , Regulação Enzimológica da Expressão Gênica , Macrófagos Peritoneais/metabolismo , Peritonite/metabolismo , Fator 3 Ativador da Transcrição/genética , Doença Aguda , Animais , Ciclo-Oxigenase 2/genética , Inflamação , Macrófagos Peritoneais/patologia , Camundongos , Camundongos Knockout , Peritonite/induzido quimicamente , Peritonite/genética , Peritonite/patologia , Zimosan/toxicidade
16.
Proc Natl Acad Sci U S A ; 111(40): 14530-5, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25246560

RESUMO

Imbalances between proinflammatory and proresolving mediators can lead to chronic inflammatory diseases. The balance of arachidonic acid-derived mediators in leukocytes is thought to be achieved through intracellular localization of 5-lipoxygenase (5-LOX): nuclear 5-LOX favors the biosynthesis of proinflammatory leukotriene B4 (LTB4), whereas, in theory, cytoplasmic 5-LOX could favor the biosynthesis of proresolving lipoxin A4 (LXA4). This balance is shifted in favor of LXA4 by resolvin D1 (RvD1), a specialized proresolving mediator derived from docosahexaenoic acid, but the mechanism is not known. Here we report a new pathway through which RvD1 promotes nuclear exclusion of 5-LOX and thereby suppresses LTB4 and enhances LXA4 in macrophages. RvD1, by activating its receptor formyl peptide receptor2/lipoxin A4 receptor, suppresses cytosolic calcium and decreases activation of the calcium-sensitive kinase calcium-calmodulin-dependent protein kinase II (CaMKII). CaMKII inhibition suppresses activation P38 and mitogen-activated protein kinase-activated protein kinase 2 kinases, which reduces Ser271 phosphorylation of 5-LOX and shifts 5-LOX from the nucleus to the cytoplasm. As such, RvD1's ability to decrease nuclear 5-LOX and the LTB4:LXA4 ratio in vitro and in vivo was mimicked by macrophages lacking CaMKII or expressing S271A-5-LOX. These findings provide mechanistic insight into how a specialized proresolving mediator from the docosahexaenoic acid pathway shifts the balance toward resolution in the arachidonic acid pathway. Knowledge of this mechanism may provide new strategies for promoting inflammation resolution in chronic inflammatory diseases.


Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Leucotrieno B4/biossíntese , Animais , Ácido Araquidônico/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/enzimologia , Células Cultivadas , Citoplasma/efeitos dos fármacos , Citoplasma/enzimologia , Relação Dose-Resposta a Droga , Feminino , Immunoblotting , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Formil Peptídeo/metabolismo , Serina/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
FASEB J ; 28(12): 5322-36, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25231976

RESUMO

Therapeutic hypothermia is commonly used to improve neurological outcomes in patients after cardiac arrest. However, therapeutic hypothermia increases sepsis risk and unintentional hypothermia in surgical patients increases infectious complications. Nonetheless, the molecular mechanisms by which hypothermia dysregulates innate immunity are incompletely understood. We found that exposure of human monocytes to cold (32°C) potentiated LPS-induced production of TNF and IL-6, while blunting IL-10 production. This dysregulation was associated with increased expression of microRNA-155 (miR-155), which potentiates Toll-like receptor (TLR) signaling by negatively regulating Ship1 and Socs1. Indeed, Ship1 and Socs1 were suppressed at 32°C and miR-155 antagomirs increased Ship1 and Socs1 and reversed the alterations in cytokine production in cold-exposed monocytes. In contrast, miR-155 mimics phenocopied the effects of cold exposure, reducing Ship1 and Socs1 and altering TNF and IL-10 production. In a murine model of LPS-induced peritonitis, cold exposure potentiated hypothermia and decreased survival (10 vs. 50%; P < 0.05), effects that were associated with increased miR-155, suppression of Ship1 and Socs1, and alterations in TNF and IL-10. Importantly, miR-155-deficiency reduced hypothermia and improved survival (78 vs. 32%, P < 0.05), which was associated with increased Ship1, Socs1, and IL-10. These results establish a causal role of miR-155 in the dysregulation of the inflammatory response to hypothermia.


Assuntos
Hipotermia/complicações , Inflamação/fisiopatologia , Interleucina-10/antagonistas & inibidores , MicroRNAs/fisiologia , Animais , Células Cultivadas , Citocinas/biossíntese , Humanos , Inflamação/etiologia , Interleucina-10/biossíntese , Camundongos , Monócitos/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo
18.
Am J Physiol Endocrinol Metab ; 307(3): E262-77, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24918202

RESUMO

Adipose tissue metabolism is a critical regulator of adiposity and whole body energy expenditure; however, metabolic changes that occur in white adipose tissue (WAT) with obesity remain unclear. The purpose of this study was to understand the metabolic and bioenergetic changes occurring in WAT with obesity. Wild-type (C57BL/6J) mice fed a high-fat diet (HFD) showed significant increases in whole body adiposity, had significantly lower V̇(O2), V̇(CO2), and respiratory exchange ratios, and demonstrated worsened glucose and insulin tolerance compared with low-fat-fed mice. Metabolomic analysis of WAT showed marked changes in lipid, amino acid, carbohydrate, nucleotide, and energy metabolism. Tissue levels of succinate and malate were elevated, and metabolites that could enter the Krebs cycle via anaplerosis were mostly diminished in high-fat-fed mice, suggesting altered mitochondrial metabolism. Despite no change in basal oxygen consumption or mitochondrial DNA abundance, citrate synthase activity was decreased by more than 50%, and responses to FCCP were increased in WAT from mice fed a high-fat diet. Moreover, Pgc1a was downregulated and Cox7a1 upregulated after 6 wk of HFD. After 12 wk of high-fat diet, the abundance of several proteins in the mitochondrial respiratory chain or matrix was diminished. These changes were accompanied by increased Parkin and Pink1, decreased p62 and LC3-I, and ultrastructural changes suggestive of autophagy and mitochondrial remodeling. These studies demonstrate coordinated restructuring of metabolism and autophagy that could contribute to the hypertrophy and whitening of adipose tissue in obesity.


Assuntos
Gordura Abdominal/metabolismo , Adiposidade , Autofagia , Metabolismo Energético , Regulação Enzimológica da Expressão Gênica , Dinâmica Mitocondrial , Obesidade/metabolismo , Gordura Abdominal/patologia , Gordura Abdominal/ultraestrutura , Animais , Tamanho Celular , Citrato (si)-Sintase/metabolismo , Ciclo do Ácido Cítrico , Dieta Hiperlipídica/efeitos adversos , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Hipertrofia , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/patologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
19.
J Surg Res ; 190(2): 672-82, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24630521

RESUMO

BACKGROUND: Sedentarism, also termed physical inactivity, is an independent risk factor for cardiovascular diseases. Mechanisms thought to be involved include insulin resistance, dyslipidemia, hypertension, and increased inflammation. It is unknown whether changes in vascular and endothelial function also contribute to this excess risk. We hypothesized that short-term exposure to inactivity would lead to endothelial dysfunction, arterial stiffening, and increased vascular inflammation. METHODS: Five healthy subjects (four men and one woman) underwent 5 d of bed rest (BR) to simulate inactivity. Measurements of vascular function (flow-mediated vasodilation to evaluate endothelial function; applanation tonometry to assess arterial resistance), inflammation, and metabolism were made before BR, daily during BR, and 2 d after BR recovery period. Subjects maintained an isocaloric diet throughout. RESULTS: BR led to significant decreases in brachial artery and femoral artery flow-mediated vasodilation (brachial: 11 ± 3% pre-BR versus 9 ± 2% end-BR, P = 0.04; femoral: 4 ± 1% versus 2 ± 1%, P = 0.04). The central augmentation index increased with BR (-4 ± 9% versus 5 ± 11%, P = 0.03). Diastolic blood pressure increased (58 ± 7 mm Hg versus 62 ± 7 mm Hg, P = 0.02), whereas neither systolic blood pressure nor heart rate changed. 15-Hydroxyeicosatetraenoic acid, an arachidonic acid metabolite, increased but the other inflammatory and metabolic biomarkers were unchanged. CONCLUSIONS: Our findings show that acute exposure to sedentarism results in decreased endothelial function, arterial stiffening, increased diastolic blood pressure, and an increase in 15-hydroxyeicosatetraenoic acid. We speculate that inactivity promotes a vascular "deconditioning" state characterized by impaired endothelial function, leading to arterial stiffness and increased arterial tone. Although physiologically significant, the underlying mechanisms and clinical relevance of these findings need to be further explored.


Assuntos
Repouso em Cama/efeitos adversos , Endotélio Vascular/fisiopatologia , Inflamação/etiologia , Comportamento Sedentário , Rigidez Vascular , Biomarcadores/sangue , Pressão Sanguínea , Feminino , Voluntários Saudáveis , Humanos , Ácidos Hidroxieicosatetraenoicos/sangue , Inflamação/sangue , Masculino , Adulto Jovem
20.
Ann Surg ; 259(2): 229-35, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23989052

RESUMO

OBJECTIVE: This article reviews the current understanding of transient receptor potential ion channels (TRP channels) in health and disease. BACKGROUND: Transient receptor potential ion channels are a group of 27 channels that are expressed in all tissues. These channels play important roles in surgically important problems, such as chronic pain, susceptibility to infection, hypothermia, and some cancers. METHODS: A literature search was performed. This review focuses on the role of TRP channels in a few surgically important disease processes, such as pain, inflammation, airway diseases, and malignant melanomas. In addition, we discuss some of the structural properties that are important for the activation of TRP channels. RESULTS: TRPA1 and TRPV1 are expressed on pain fibers and play an important role in the development of chronic pain, such as chemotherapy-related neuropathic pain. Deletion of TRPA1 and TRPV1 suppresses the development of chronic pain, and blockers of TRPA1 and TRPV1 show promise as a new class of painkillers. Furthermore, several TRP channels are expressed on immune cells. Macrophages express at least 3 different TRP channels, and the properly balanced activation of all these channels together allows normal macrophage function. Deletion of any of these channels results in impaired macrophage function and increased susceptibility to infection. Because several of these TRP channels on macrophages are temperature sensitive, they may comprise the link for hypothermia-related infectious complications in trauma, and to a lesser degree, in elective surgical patients. CONCLUSIONS: Transient receptor potential ion channels are involved in several surgically important disease processes. Activation or blockade of these channels offers new therapeutic opportunities. Pharmacologic activation or blockade of TRP channels may offer new treatment options in surgical patients for the management of pain and infections.


Assuntos
Dor Crônica/metabolismo , Inflamação/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Analgésicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Biomarcadores/metabolismo , Canais de Cálcio/metabolismo , Capsaicina/uso terapêutico , Cloridrato de Duloxetina , Humanos , Inflamação/tratamento farmacológico , Macrófagos/metabolismo , Melanoma/metabolismo , Monócitos/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/metabolismo , Doenças Respiratórias/metabolismo , Infecção da Ferida Cirúrgica/metabolismo , Infecção da Ferida Cirúrgica/prevenção & controle , Canal de Cátion TRPA1 , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo , Tiofenos/uso terapêutico , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Canais de Potencial de Receptor Transitório/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...